dvd

km

Conditional Displacement Readout

PUBLISHED: Jul 07, 2024

temp placeholder post

Conditional Displacement Readout

Created: June 4, 2025 3:31 PM

Single-Qubit and Derivation

The dispersive hamiltonian (from https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.080503) in the frame rotating at ωr\omega_r is

H^/(Δ+χ)σ^+σ^+[(Ωq+iΩrχg)σ^++H.c.]χσ^za^a^+[(iΩrΩqχgσ^z)a^+H.c.]\hat{H}''/\hbar \approx (\Delta + \chi)\hat{\sigma}_{+}\hat{\sigma}_{-} + \left[ \left( \Omega_q + i\Omega_r \frac{\chi}{g} \right) \hat{\sigma}_{+} + \text{H.c.} \right] - \chi\hat{\sigma}_z\hat{a}^{\dagger}\hat{a} + \left[ \left( i\Omega_r - \Omega_q \frac{\chi}{g}\hat{\sigma}_z \right) \hat{a}^{\dagger} + \text{H.c.} \right]

Note that the approximations for two-level systems has been made, to make χ=g2Δ\chi=\frac{g^2}{\Delta}

The virtual origin αvo\alpha_{vo} is given by

αvo=Ωqg\alpha_{vo}=\frac{-\Omega_q}{g}

We can visualize this “origin shift” by calculating the pointer state trajectories.

Heisenberg-Langevin Pointer State Trajectories

Using the Heisenberg-Langevin equation

a^˙(t)=i[a^,H^]κ2a^(t)+κa^in(t)\dot{\hat{a}}(t) = -\frac{i}{\hbar}[\hat{a}, \hat{H}''] - \frac{\kappa}{2} \hat{a}(t) + \sqrt{\kappa}\, \hat{a}_{\text{in}}(t)

we first calculate the commutators

i[a^,χσ^za^a^]=iχσ^za^i[a^,(iΩrΩqχgσ^z)a^+H.c.]=Ωr+iΩqχgσ^z-\frac{i}{\hbar}[\hat{a}, -\hbar \chi \hat{\sigma}_z \hat{a}^\dagger \hat{a}] = i \chi \hat{\sigma}_z \hat{a}\\ -\frac{i}{\hbar} \left[ \hat{a}, \hbar \left( i\Omega_r - \Omega_q \frac{\chi}{g} \hat{\sigma}_z \right) \hat{a}^\dagger + \text{H.c.} \right] = \Omega_r + i \Omega_q \frac{\chi}{g} \hat{\sigma}_z ddta^(t)=(iχσ^z+κ2)a^(t)+(Ωr+iΩqχgσ^z)\frac{d}{dt} \hat{a}(t) = -\left( i \chi \hat{\sigma}_z + \frac{\kappa}{2} \right) \hat{a}(t) + \left( \Omega_r + i \Omega_q \frac{\chi}{g} \hat{\sigma}_z \right) α˙(t)=(iχσz+κ2)α(t)+Ωr+iΩqχgσz\dot{\alpha}(t) = -\left(i\chi\sigma_z + \frac{\kappa}{2}\right)\alpha(t) + \Omega_r + i\Omega_q\frac{\chi}{g}\sigma_z α(t)=αss+(α(0)αss)e(iχσz+κ2)t \alpha(t) = \alpha_{ss} + \left(\alpha(0) - \alpha_{ss}\right) e^{-\left(i\chi\sigma_z + \frac{\kappa}{2}\right)t}  αss=iΩr+Ωqχgσziκ2+χσz+δr\alpha_{ss} = \frac{i\Omega_r + \Omega_q\frac{\chi}{g}\sigma_z} {\frac{i\kappa}{2} + \chi\sigma_z+\delta_r}

Plots

image.png

Two coupled qubits case

The two coupled qubit case is described by the hamiltonian

H^=(Δ1+χ1)σ^+,1σ^,1+(Δ2+χ2)σ^+,2σ^,2χ1σ^z,1a^a^χ2σ^z,2a^a^+(Ωq1+iΩrχ1g1)σ^+,1+(Ωq1iΩrχ1g1)σ^,1+(Ωq2+iΩrχ2g2)σ^+,2+(Ωq2iΩrχ2g2)σ^,2+(iΩrΩq1χ1g1)σ^z,1a^+(iΩrΩq1χ1g1)σ^z,1a^+(iΩrΩq2χ2g2)σ^z,2a^+(iΩrΩq2χ2g2)σ^z,2a^ \hat{H} = (\Delta_1 + \chi_1) \hat{\sigma}_{+,1} \hat{\sigma}_{-,1} + (\Delta_2 + \chi_2) \hat{\sigma}_{+,2} \hat{\sigma}_{-,2} - \chi_1 \hat{\sigma}_{z,1} \hat{a}^\dagger \hat{a} - \chi_2 \hat{\sigma}_{z,2} \hat{a}^\dagger \hat{a} + \left( \Omega_{q1} + i \frac{\Omega_r \chi_1}{g_1} \right) \hat{\sigma}_{+,1} + \left( \Omega_{q1} - i \frac{\Omega_r \chi_1}{g_1} \right) \hat{\sigma}_{-,1} + \left( \Omega_{q2} + i \frac{\Omega_r \chi_2}{g_2} \right) \hat{\sigma}_{+,2} + \left( \Omega_{q2} - i \frac{\Omega_r \chi_2}{g_2} \right) \hat{\sigma}_{-,2} + \left( i \Omega_r - \frac{\Omega_{q1} \chi_1}{g_1} \right) \hat{\sigma}_{z,1} \hat{a}^\dagger + \left( -i \Omega_r - \frac{\Omega_{q1} \chi_1}{g_1} \right) \hat{\sigma}_{z,1} \hat{a} + \left( i \Omega_r - \frac{\Omega_{q2} \chi_2}{g_2} \right) \hat{\sigma}_{z,2} \hat{a}^\dagger + \left( -i \Omega_r - \frac{\Omega_{q2} \chi_2}{g_2} \right) \hat{\sigma}_{z,2} \hat{a} 

We also note the effective total drive of the qubit system,

εeff(σz,1,σz,2)=Ωri(Ωq1χ1σz,1g1+Ωq2χ2σz,2g2)\varepsilon_{\text{eff}}(\sigma_{z,1}, \sigma_{z,2}) = \Omega_{r} - i \left( \Omega_{q1}\frac{\chi_1 \sigma_{z,1}}{g_1} + \Omega_{q2}\frac{\chi_2 \sigma_{z,2}}{g_2} \right)

which we note is identical to the single-qubit drive with each parameter split. The σz\sigma_z is projected into ±1\pm1 depending on the state of the qubit.

Recalculating the steady-state pointer in IQ-space,

αss=εiκ/2+δr+χ1σz,1+χ2σz,2\alpha_{ss}=\frac{-\varepsilon}{i\kappa/2+\delta_{r}+\chi_1\sigma_{z,1}+\chi_2\sigma_{z,2}}

In our case, we want 10\ket{10} and 01\ket{01} to be indistinguishable in this IQ-space. This is first achieved by having χ1=χ2\chi_1=\chi_2:

image.png

in this case, the magnitudes of the drives Ωq\Omega_q are equal and simply shifted 180 degrees in phase. However, with unequal χ\chi, the states are no longer on the same point:

image.png

no parameters were changed between the two, having the same drives, but χ1\chi_1 is now 1/4 of χ2\chi_2. To account for this, we find an expression to change the drive pulses

α10=α01iΩr(Ωq1χ1g1+Ωq2χ2g2)iκ/2+δr+χ1χ2=iΩr(Ωq1χ1g1+Ωq2χ2g2)iκ/2+δrχ1+χ2\alpha_{10}=\alpha_{01}\\ \frac{-i\Omega_{r} - \left( \Omega_{q1}\frac{\chi_1}{g_1} + \Omega_{q2}\frac{-\chi_2}{g_2} \right)}{i\kappa/2+\delta_{r}+\chi_1-\chi_2} = \frac{-i\Omega_{r} - \left( \Omega_{q1}\frac{-\chi_1}{g_1} + \Omega_{q2}\frac{\chi_2}{g_2} \right)}{i\kappa/2+\delta_{r}-\chi_1+\chi_2}

after some cross multiplying, we end with

Ωq1=χ1g2χ2g1Ωq2|\Omega_{q1}|=\frac{\chi_1g_2}{\chi_2g_1}|\Omega_{q2}|

after re-simulating, we find

image.png

(the only parameter changed between this graph and the previous one was Ωq2\Omega_{q2}). Letting ϕ2=0\phi_2=0, we calculate the phase difference between the two pulses:

ϕ1=tan1(χ2g2Ωq2+2Ωr(χ1χ2)κ)tan1(χ1g1Ωq1)\phi_1= \tan^{-1}\left( \frac{\chi_2}{g_2} |\Omega_{q2}| + \frac{2\Omega_r (\chi_1 - \chi_2)}{\kappa} \right)- \tan^{-1}\left( \frac{\chi_1}{g_1} |\Omega_{q1}| \right)

Multilevel and minimizing SNR

We extend our simulation for multilevel systems, and calculate SNR based on phase-space distance

SNR=αiαj2SNR = |\alpha_i - \alpha_j|^2

Varying parameters to maximize the minimum SNR between any two states, we find

image.png

Ωq1=2.000,Ωq2=1.997,ϕq1=0.000,ϕq2=1.602\Omega_{q1}=2.000, \Omega_{q2}=1.997, \phi_{q1}=0.000, \phi_{q2}=1.602

Both Ω\Omega were limited at 2.02.0 to speed up iteration - the ratios of magnitude is the significant factor in this case.

Readout Optimization

Optimizing both qubit drives for readout SNR, we consider varying metrics for separating pointer states.

  1. Minimum SNR: the minimum SNR between any two states considered.
  2. Average SNR: the average SNR between all pairs of states
  3. Spacing: ****evenly spacing each pointer state within phase space

With all three considered, we simulate with the following cavity conditions

image.png

image.png

The plot above is configured for minimum SNR. Below, the left is configured for average, and the right is configured for spacing (visually very similar, but parameters are slightly different).

image.png

image.png

Measurement-Induced State Transitions - optimization and sim

Measurement Induced State Transitions

image.png